
ENZO Simulations at PetaScale

Robert Harkness

UCSD/SDSC

December 17th, 2010



Acknowledgements

• LCA team members past and present

• Phil Andrews and all the staff at NICS
– Especially Glenn Brook, Mark Fahey

– Outstanding support by all concerned

• The HDF5 Group
– Thanks for those in-core drivers!





The ENZO Code(s)

• General-purpose Adaptive Mesh Refinement (AMR) code

– Hybrid physics capability for cosmology
• PPM Eulerian hydro and collisionless dark matter (particles)

• Grey radiation diffusion, coupled chemistry and RHD

– Extreme AMR to > 35 levels deep
• > 500,000 subgrids

• AMR load-balancing and MPI task-to-processor mapping

– Ultra large-scale non-AMR applications at full scale on NICS XT5

– High performance I/O using HDF5

– C, C++ and Fortran90, >> 185,000 LOC



ENZO - One code, different modes

• ENZO-C
– Conventional ENZO cosmology code
– MPI and OpenMP hybrid, AMR and non-AMR

• ENZO-R
– ENZO + Grey flux-limited radiation diffusion

• Coupled chemistry and radiation hydrodynamics

– MPI and OpenMP hybrid (in ENZO and HYPRE)
• Two simultaneous levels of OpenMP threading

– Root grid decomposition (static work distribution)
– Loop over AMR subgrids on each level (dynamic)
– Allows memory footprint to grow at fixed MPI task count

• E.g. 1 to 12 OpenMP threads per task, 10x memory range



Hybrid ENZO on the Cray XT5

• ULTRA : non-AMR 6400^3 80 Mpc box
– Designed to “fit” on the upgraded NICS XT5 Kraken

– 268 billion zones, 268 billion dark matter particles

– 15,625 (25^3) MPI tasks, 256^3 root grid tiles

– 6 OpenMP threads per task, 1 MPI task per socket

– 93,750 cores, 125 TB memory

– 30 TB per checkpoint/re-start/data dump

– >15 GB/sec read, >7 GB/sec write, non-dedicated

– 1500 TB of output

– Cooperation with NICS staff essential for success



1% of the 6400^3 simulation



Hybrid ENZO-C on the Cray XT5

• AMR 1024^3 50 Mpc box, 7 levels of refinement
– 4096 (16^3) MPI tasks, 64^3 root grid tiles
– Refine “everywhere”
– 1 to 6 OpenMP threads per task - 4096 to 24576 cores

• Increase thread count with AMR memory growth
– Fixed number of MPI tasks
– Initially 12 MPI tasks per node, 1.3 GB/task
– As AMR develops

• Increase node count => larger memory per task
• Increase threads per MPI task => keep all cores busy
• On XT5 this can allow for up to 12x growth in memory
• Load balance can be poor when Ngrid << Nthread





ENZO-R on the Cray XT5

• Non-AMR 1024^3 8 and 16 Mpc to Z=4
– 4096 (16^3) MPI tasks, 64^3 root grid tiles

– LLNL Hypre precondioner & solver for radiation
• near ideal scaling to at least 32K MPI tasks

– Hypre is threaded with OpenMP
• LLNL working on improvements

• Hybrid Hypre built on multiple platforms

– Power7 testing in progress for Blue Waters
• performance ~2x AMD Istanbul

• Very little gain from Power7 VSX (so far)







2011 INCITE : Re-Ionizing the Universe

• Non-AMR 3200^3 to 4096^3 RHD with ENZO-R
– Hybrid MPI and OpenMP on NCCS Jaguar XT5
– SMT and SIMD tuning
– 80^3 to 200^3 root grid tiles
– 1-6 OpenMP threads per task
– > 64 - 128K cores total
– > 8 TBytes per checkpoint/re-start/data dump (HDF5)
– Asynchronous I/O and/or inline analysis
– In-core intermediate checkpoints
– 64-bit arithmetic, 64-bit integers and pointers
– 35 M hours



Near-term Future Developments

• Enhancements to OpenMP threading
– Prepare for at least 8 threads per task 

• Prototype RHD Hybrid ENZO + Hypre
– Running on NCSA Blue Drop
– Performance is ~2x Cray XT5, per core
– SIMD tuning for Power7 VSX

• PGAS with UPC
– 4 UPC development paths
– Function and Scalability

• 8192^3 HD, 4096^3 RHD and 2048^3 L7 AMR
– All within the range of NCSA/IBM Blue Waters



PGAS in ENZO

• Dark Matter Particles
– Use UPC to distribute particles evenly
– Eliminates potential node memory exhaustion

• AMR Hierarchy
– UPC to eliminate replication 
– Working with DK Panda (Ohio) 

• Replace 2-sided MPI
– Gradually replace standard MPI
– Replace blocking collectives

• Replace OpenMP within a node





Dirty Laundry List

• Full-scale runs are severely exposed to
– Hardware MTBF on 100K cores
– Any I/O errors
– Any interconnect link errors, MPI tuning
– Scheduling and sharing (dedicated is best)
– OS jitter
– SILENT data corruption!

• Large codes are more exposed to:
– Compiler bugs and instability (especially OpenMP)
– Library software revisions (incompatibility)

• NICS & NCCS do a great job of controlling this

– Heap fragmentation (especially AMR)





More Dirty Laundry

• HW MTBF => checkpointing @ 6hrs
– With failures ~50% overhead in cost

• I/O is relatively weak on Kraken
– Phased I/O to spare other users
– Reduced I/O performance by 30-40%
– Re-start ~12 GB/sec (45 min)
– Checkpoint write ~7 GB/sec (75 min)

• Remote file xfer ~ 500 MB/sec
– But no other sites can manage 30 TB!

• Archive file xfer ~300 MB/sec
– Only ORNL/NICS HPSS can manage ~1 PB



Choose a machine, choose your future

• Aggregate memory limits what you could do
• Cost decides what you can do ~100M hrs/sim?
• End of the weak scaling era with Blue Waters?
• I/O for data and benchmarking is now critical

– Traditional checkpointing is impossible at exascale

• Current GPUs require contiguous, aligned access
– Re-structuring for this can require new algorithms

• E.g. consider directionally-split strides 1, N, N^2

• GPU data must reside permanently in GPU memory
– External functions as “decelerators” (LANL Cell)
– GPU memory is smaller - what can fit given the flops?

• Memory bandwidth often determines the bottom line



Future without GPGPUs?

• Larrabee-like instruction set (LRBni)
– Vector registers, masks, gather-scatter
– Traditional vectorization / compilers
– No restrictions on stride or alignment
– X86 code
– Can run the O/S!
– Intel Knight’s Ferry/Knight’s Corner

• Custom accelerators, FPGAs, PIM?
• PGAS at multiple levels

– UPC is the leading choice, lowest risk

• At Exascale, HW MTBF is probably a killer














